Identificar a los estudiantes de primer año en riesgo académico en un universidad en Uruguay: evaluación psicométrica de una matemática prueba de diagnóstico

  • Wilson González-Espada
  • Eduardo Lacués
  • Gabriela Otheguy
  • Magdalena Pagano
  • Alejandra Pollio
  • Rosina Pérez
  • Marcos Sarasola
Palabras clave: Teoría de respuesta al ítem, pruebas diagnósticas, evaluación, matemáticas

Resumen

Este estudio determinó hasta qué grado la Prueba Diagnóstica de Matemáticas (PDM) que se ofrece en la Universidad Católica de Uruguay (UCU) es psicométricamente apropiada. Además, se exploró hasta qué grado la PDM se correlaciona con el éxito académico. Se halló que cinco de las preguntas originales de la PDM, de un total de 30, fallaron las pruebas de validez y confiabilidad, y se eliminaron. Las puntuaciones del resto de las preguntas tuvieron una alta correlación con la cantidad de cursos de matemáticas requeridos al final del primer año, confirmando que los estudiantes con una puntuación baja podrían necesitar apoyo adicional para permanecer en la carrera de ingeniería.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Wilson González-Espada

Department of Mathematics and Physics, College of Science, Morehead State University, Morehead, Kentucky, USA.

Eduardo Lacués

Department of Mathematics, College of Natural Sciences, Catholic University of Uruguay, Montevideo, Uruguay.

Gabriela Otheguy

Department of Mathematics, College of Natural Sciences, Catholic University of Uruguay, Montevideo, Uruguay.

Magdalena Pagano

Department of Mathematics, College of Natural Sciences, Catholic University of Uruguay, Montevideo, Uruguay.

Alejandra Pollio

Department of Mathematics, College of Natural Sciences, Catholic University of Uruguay, Montevideo, Uruguay.

Rosina Pérez

Department of Education, College of Human Sciences, Catholic University of Uruguay, Montevideo, Uruguay.

Marcos Sarasola

Department of Education, College of Human Sciences, Catholic University of Uruguay, Montevideo, Uruguay.

Citas

Altbach, P. G., Resisberg, L., & Rumbley, L. E. (2009). Trends in global higher education: Tracking an academic revolution. Paris, France: UNESCO, 2009.

Alvarez, W., Lacués, E., & Pagano, M. (2002). Determinación del perfil de los ingresantes a la universidad en relación con las estructuras lógicas que maneja, la capacidad que poseen en el uso del lenguaje simbólico y los conocimientos previos que tienen de cálculo diferencial. Acta Latinoamericana de Matemática Educativa (RELME 15 Buenos Aires), 15(2), 663-668.

Alvarez, W., Lacués, E., & Pagano, M. (2004). Diseño y validación de un instrumento predictor del éxito académico de alumnos ingresantes a la universidad. Acta Latinoamericana de Matemática Educativa (RELME 17 Santiago de Chile), 17(1), 116-129.

Alvarez, W., Czerwonogora, A., Lacués, E., Leymonie, J., & Pagano, M. (2007). La matemática al ingreso a la universidad. Un estudio comparativo de cuatro facultades en el Uruguay. Revista Iberoamericana de Educación, 42(4), 1-9.

Artigue, V., Flores, J., Lacués, E., & Messano, C. (2017). Buscando medidas de apoyo para superar el fracaso académico. Pensamiento Matemático, 7(2), 27-42.

Astin, A. W. (1990). Educational assessment and educational equity. American Journal of Education, 98(4), 458-478.

Backhoff, E., Larrazolo, N., & Rosas, M. (2016). Nivel de dificultad y poder de discriminación del Examen de Habilidades y Conocimientos Básicos. Revista electrónica de Investigación Educativa, 2(1). Retrieved from <http://redie.uabc.mx/vol2no1/contenido-backhoff.html>.

Bastedo, M. N. & Jaquette, O. (2011). Running in place: Low-income students and the dynamics of higher education. Educational Evaluation and Policy Analysis, 33(3), 318-339.

Baum, S. & Payea, K. (2004). Education pays: The benefits of higher education for individuals and society. Washington, D. C.: College Board.

Bissett, H. G. (1995). Selective admissions in community college nursing programs: Ethical considerations. Community College Review, 22(4), 35-46.

Boado, M. (2011). La deserción estudiantil universitaria en la UdelaR y en Uruguay entre 1997 y 2006. Montevideo: Ediciones Universitarias.

Botinelli, E. (2012). Juicio de la población sobre la educación universitaria y ranking de instituciones educativas. Montevideo, Uruguay: Instituto Factum. Retrieved from: <http://www.factum.uy/pdf/articulos/2012/opv120920.pdf>.

Bourel, M., Kahan, S., Miguez, M., & Stalker, D. (2017). Informe Herramienta Diagnóstica al Ingreso Componente Matemática. Montevideo: Facultad de Ingeniería (FING). Retrieved from <https://www.fing.edu.uy/sites/default/files/claustro_citaciones/2017/distribuido/31436/56%20%282016-2018%29%20Informe_HDI_Octubre2017_final-2.pdf>.

Bowen, W. G., Chingos, M. M., & McPherson, M. S. (2009). Crossing the finish line: Completing college at America’s public universities. Princeton, New Jersey: Princeton University Press.

Brown, J. (2000). What is construct validity? Shiken JALT Testing & Evaluation SIG Newsletter, 4(2), 8-12. Retrieved from: < http://hosted.jalt.org/test/bro_8.htm>.

Brunner, J. J. (2011). Educación superior en Iberoamérica. Santiago, Chile: Universia. Retrieved from: <http://200.6.99.248/~bru487cl/files/Brunner_Bogota_16102012.pdf>.

Byrd, K. L., & MacDonald, G. (2005). Defining college readiness from the inside out: First-generation college student perspectives. Community College Review, 33(1), 22-30.

Crocker, L. & Algina, J. (1986). Introduction to classical and modern test theory. Fort Worth, Texas: Harcourt Brace Jovanovich Publishers.

Daempfle, P. A. (2003). An analysis of the high attrition rates among first year college science, math, and engineering majors. Journal of College Student Retention, 5(1), 37-52.

Dale, S. B. & Krueger, A. B. (2002). Estimating the payoff to attending a more selective college: An application of selection on observables and unobservables. The Quarterly Journal of Economics, 117(4), 1491-1527.

De Klerk, G. (2014). Classical test theory. In: M. Born, C. Foxtrot, & R. Butter (Eds.). Online Readings in Testing and Assessment, International Test Commission. Retrieved from: <http://archive.is/Jji1R>.

Devellis, R. F. (2006). Classical test theory: Measurement in a multi-ethnic society. Medical Care, 44(11), S50-S59.

Ebel, R. L. & Frisbie, D. A. (1991). Essentials of Educational Measurement, 5th Ed. Englewood Cliffs, New Jersey: Prentice-Hall.

Eckles, J. E. & Stradley, E. G. (2012). A social network analysis of student retention using archival data. Social Psychology of Education, 15(2), 165-180.

Eggens, L., Van der Werf, M. P. C., & Bosker, R. J. (2008). The influence of personal networks and social support on study attainment of students in university education. Higher Education, 55(5), 553-573.

Erdoli, L. A. (2012). What makes a test difficult? Exploring the effect of item. Journal of Instructional Psychology, 39(3-4), 171-176.

Ferreyra, M. M., Abitabile, C., Alvarez, J. B., Paz, F. H., & Urzúa, S. (2017). At a Crossroads: Higher Education in Latin America and the Caribbean. Directions in Development. Washington, DC: The World Bank.

Fhloinn, E. N., Bhaird, C. M., & Nolan, B. (2014). University students’ perspectives on diagnostic testing in mathematics. International Journal of Mathematical Education in Science and Technology, 45(1), 58-74.

Gillies, D. (2011). State education as high-yield investment: Human capital theory in European policy discourse. Journal of Pedagogy, 2(2), 224-245.

González-Espada, W. J. (2009). Detecting gender bias through test item analysis. The Physics Teacher, 47(3), 175-179.

González-Espada, W. J. (2008). Physical science lab quizzes: Results from test item analysis. Journal of Science Education/REC, 9(2), 81-85.

González-Espada, W. J. & Napoleoni-Milan, R. L. (2006). The impact of the freshman year experience on science students. In J. J. Mintzes & W. H. J. Leonard (Eds.). Handbook of college science teaching. Arlington, VA: National Science Teachers Association, 351-358.

Geisinger, B. N. & Raman, D. R. (2013). Why they leave: Understanding student attrition from engineering majors. International Journal of Engineering Education, 29(4), 914-925.

Haag, S., Hubele, N., Garcia, A., & McBeath, K. (2007). Engineering undergraduate attrition and contributing factors. International Journal of Engineering Education, 23(5), 929–940.

Ingram, W. G. & Morrisey, S. E. (2009). Ethical dimensions of the open-door admissions policy. New Directions for Community Colleges, 2009(148), 31-38.

Institute for Higher Education Policy (2005). The investment payoff: A 50-state analysis of the private and public benefits of higher education. Washington, District of Columbia: Institute for Higher Education Policy.

Karaman-Chaparenco, J. O. (2010). De la República de las Letras a la República Oriental del Uruguay: El neoclasicismo en la formación del estado y el sujeto nacionales 1811-1837. 194pp. Unpublished thesis, Doctor of Philosophy in Hispanic Studies, The University of British Columbia, Vancouver, Canada.

Knell, J. L., Wilhoite, A. P., Fugate, J. Z., and González-Espada, W. J. (2015). Using Item Response Theory to improve locally-constructed multiple choice tests: Measuring knowledge gains and curricular effectiveness. Electronic Journal of Science Education, 19(7). Retrieved from: <http://ejse.southwestern.edu/article/view/15452/ 9982>.

Koretz, D. M. (2008). Measuring up: What educational testing really tells us. Cambridge, Massachusetts: Harvard University Press.

Lacués, E., Díaz, L., & Huertas, J. (2018). ¿Qué estructuras deductivas usan alumnos ingresantes a la universidad? Bolema: Boletim de Educação Matemática, 32(62), 802-824. doi: http://dx.doi.org/10.1590/1980-4415v32n62a03.

Laskey, M. L. & Hetzel, C. J. (2011). Investigating factors related to retention of atrisk college students. The Learning Assistance Review, 16(1), 31-43.

Legg, M. J., Legg, J. C., & Greenbowe, T. J. (2011). Analysis of success in general chemistry based on diagnostic testing using logistic regression. Journal of

Chemical Education, 78(8), 1117-1121.

Lochner, L. & Moretti, E. (2014). The effect of education on crime: Evidence from prison inmates, arrests, and self-reports. American Economic Review, 94(1), 155-189.

Ministerio de Educacion y Cultura (2013). Anuario estadístico de educación. Montevideo, Uruguay: Ministerio de Educación y Cultura. Retrieved from: <http://www.mec.gub.uy/innovaportal/file/927/1/anuario_2013.pdf>.

Morales, P. (2012). Análisis de ítems en las pruebas objetivas. Madrid, Spain: Universidad Pontificia Comillas, Retrieved from: <https://educrea.cl/wpcontent/uploads/2014/11/19-nov-analisis-de-items-en-las-pruebasobjetivas.pdf>.

Mullin, C. M. (2017). When less is more: Prioritizing open access. Washington, DC: American Association of Community Colleges. Retrieved from <https://files.eric.ed.gov/fulltext/ED579759.pdf>.

Mullin, C. M. (2012a). It’s a matter of time: Low-income students and community colleges. Policy Brief 2012-02PBL. Washington, District of Columbia: American Association of Community Colleges.

Mullin, C. M. (2012b). Why access matters: The community college student body. Policy Brief 2012-01PBL. Washington, District of Columbia: American Association of Community Colleges.

Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. In A. Gagatses & S. G. Papastavridis (Eds.), 3rd Mediterranean Conference on Mathematical Education Athens, Greece: Hellenic Mathematical Society and Cyprus Mathematical Society, pp. 115-124.

Nuñez-Peña, M. I., Suarez-Pellicioni, M., & Bono, R. (2013). Effects of math anxiety on student success in higher education. International Journal of Educational Research, 58(1), 36-43.

OCDE (2006). PISA marco de la evaluación: Conocimientos y habilidades en ciencias, matemáticas y lectura. España: Santillana.

Perry, A. B. (2004). Decreasing math anxiety in college students. College Student Journal, 38(2), 321-324.

Raisman, N. (2013). The cost of college attrition at four-year colleges and universities. Virginia Beach, Virginia: Educational Policy Institute.

Ridgell, S. D. & Lounsbury, J. W. (2004). Predicting academic success: General intelligence, “Big Five” personality traits, and work drive. College Student Journal, 38(1), 607-612.

Rosenthal, R. & Jacobson, L. (1968). Pygmalion in the Classroom. New York, NY: Holt, Rinehart & Winston.

Roueche, J. E. & Baker, G. A. (1987). Access and excellence: The open-door college. Washington, District of Columbia: Community College Press.

Santalices, B. (2010). El rol de las universidades en el desarrollo científico y tecnológico: Informe de la Educación Superior en Iberoamérica. Santiago, Chile: Centro Interuniversitario de Desarrollo (CINDA), Universia. Retrieved from: < http://www.fundacionuniversia.net/fichero?id=1516>.

Scherer, J. L. & Anson, M. L. (2014). Community college and the access effect: Why open admissions suppresses achievement. New York, New York: Palgrave Macmillan.

Shannon, H. D. & Smith, R. C. (2006). A case for the community college’s open access mission. New Directions for Community Colleges, 2006(136), 15-21.

Suresh, R. (2006). The relationship between barrier courses and persistence in engineering. Journal of College Student Retention, 8(2), 215–239.

Thompson, R. (2019). Education, inequality and social class: Expansion and stratification in educational opportunity. New York, NY: Routledge/ Taylor & Francis Group.

Tinto, V. (1993). Leaving college: Rethinking the causes and cures of student attrition, 2nd Ed. Chicago, Illinois: University of Chicago Press.

Trostel, P. A. (2010). The fiscal impacts of college attainment. Research in Higher Education, 51(3), 220-247.

Tsao, T. M. (2005). Open admissions, controversies, and CUNY: Digging into social history through a first-year composition course. The History Teacher, 38(4), 469-482.

UNESCO (2015). Draft preliminary report concerning the preparation of a global convention on the recognition of higher education qualifications. Paris, France: UNESCO.

Universidad de la Republica (2016). Ley Orgánica de la Universidad de la República, Ley número 12.549. Montevideo, Uruguay: Universidad de la República. Retrieved from: <http://dgjuridica.udelar.edu.uy/ley-organica/>.

U.S. Department of Labor (2015). Current population survey. Washington, District of Columbia: Bureau of Labor Statistics. Retrieved from: <https://www.bls.gov/emp/chart-unemployment-earnings-education.htm>.

Vaughan, G. B. (1985). Maintaining open access and comprehensiveness. New Directions for Community Colleges, 1985(52), 17-28.

Villegas, C. G. (2019) The youth unemployment crisis: A reference handbook. Santa Barbara, CA: ABC-CLIO LLC.

Voigt, L. & Hundrieser, J. (2008). Student success, retention, and graduation: Definitions, theories, practices, patterns, trends. Iowa City, Iowa: Noel-Levitz.

Workman, E. (2012). Teacher expectations of students: A self-fulfilling prophecy? The Progress of Education Reform, 13(6). Retrieved from <http://www.ecs.org/clearinghouse/01/05/51/10551.pdf>.

Yang, F. M. (2014). Item response theory for measurement validity. Shanghai Archives of Psychiatry, 26(3), 171-177.

Publicado
2019-08-01
Cómo citar
González-Espada, W., Lacués, E., Otheguy, G., Pagano, M., Pollio, A., Pérez, R., & Sarasola, M. (2019). Identificar a los estudiantes de primer año en riesgo académico en un universidad en Uruguay: evaluación psicométrica de una matemática prueba de diagnóstico. UNIÓN - REVISTA IBEROAMERICANA DE EDUCACIÓN MATEMÁTICA, 15(56). Recuperado a partir de https://union.fespm.es/index.php/UNION/article/view/277
Sección
Artículos
Recibido 2021-05-12
Publicado 2019-08-01