La enseñanza de la derivabilidad de una función en un punto. Sistemas de representación y conocimiento especializado del contenido
Resumen
El objetivo de este trabajo es profundizar en la enseñanza de la derivabilidad de una función en un punto. Para ello, se ha diseñado un cuestionario que ha sido contestado por 17 profesores de matemáticas de Educación Secundaria Obligatoria y Bachillerato, cuyas respuestas han sido analizadas tanto cualitativa como cuantitativamente de manera descriptiva. Las conclusiones obtenidas nos permiten afirmar que el profesorado se decanta por el uso del sistema de representación algebraico de la derivada y, además, se han identificado diversos aspectos que deberían de formar parte del “Conocimiento especializado del contenido” del profesorado de matemáticas en la enseñanza de la derivabilidad de una función en un punto.
Descargas
Citas
Badillo, E., Azcárate, C. y Font, V. (2011). Análisis de los niveles de comprensión de los objetos f’(a) y f’(x) en profesores de matemáticas. Enseñanza de las Ciencias, 29(2), 191-206. https://doi.org/10.5565/rev/ec/v29n2.546
Ball, D. L., Hoover Thames, M. y Phelps, G. (2008). Content Knowledge for Teaching: What Makes It Special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
Contreras de la Fuente, A., Luque Cañada, L. y Ordoñez Cañada, L. (2003). Una perspectiva de la enseñanza-aprendizaje de la continuidad y la derivada de una función en Bachillerato y Universidad. Revista de Educación, 331, 399-419.
Font, V. (2005). Una aproximación ontosemiótica a la didáctica de la derivada. En Maz, A., Gómez, B. y Torralbo, M. (Eds.). Investigación en Educación Matemática (pp. 111-128). Servicio de Publicaciones de la Universidad de Córdoba y Sociedad Española de Investigación en Educación Matemática.
Font, V., Planas, N. y Godino, J. D. (2010). Modelo para el análisis didáctico en educación matemática. Infancia y Aprendizaje, 33(1), 89-105.
Fuentealba, C., Badillo, E. y Sánchez-Matamoros, G. (2018). Puntos de no-derivabilidad de una función y su importancia en la comprensión del concepto de derivada. Educação e Pesquisa, 44, 1-20. https://doi.org/10.1590/S1678-4634201844181974
Fuentealba, C., Badillo, E. y Sánchez-Matamoros, G. (2019). Identificación y caracterización de los subniveles de desarrollo del esquema de derivada. Enseñanza de las Ciencias, 37(2), 63-84. https://doi.org/10.5565/rev/ensciencias.2518
Garcés, W. (2021). Análisis de las pautas que rigen la práctica del profesor en la enseñanza de derivadas en ciencias básicas en carreras de ingeniería. REDIMAT – Journal of Research in Mathematics Education, 10(3), 239-268. https://doi.org/10.17583/redimat.7957
García, M., Gavilán, J. M. y Llinares, S. (2012). Perspectiva de la práctica del profesor de matemáticas de secundaria sobre la enseñanza de la derivada. De la perspectiva del profesor a la práctica. Enseñanza de las Ciencias, 30(3), 219-235. https://doi.org/10.5565/rev/ec/v30n3.684
Gavilán, J. M., García, M. y Llinares, S. (2007a). Una perspectiva para el análisis de la práctica del profesor de matemáticas. Implicaciones metodológicas. Enseñanza de las Ciencias, 25(2), 157-170. https://doi.org/10.5565/rev/ensciencias.3768
Gavilán, J. M., García, M. y Llinares, S. (2007b). La modelación de la descomposición genética de una noción matemática. Explicando la práctica del profesor desde el punto de vista del aprendizaje potencial de los estudiantes. Educación Matemática, 19(2), 5-39.
Gavilán-Izquierdo, J. M., García, M. y Martín-Molina, V. (2021). Characterizing the role of technology in mathematics teachers’ practices when teaching about the derivative. Computers in the school, 38(1), 36-56. https://doi.org/10.1080/07380569.2021.1882211
Godino, J. D., Batanero, C. y Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM. The International Journal on Mathematics Education, 39(1), 127-135.
Godino, J. D., Batanero, C. y Font, V. (2019). The Onto-semiotic Approach: implications for the prescriptive character of didactics. For the Learning of Mathematics, 39(1), 37-42.
González-García, A., Muñiz-Rodríguez, L. y Rodríguez-Muñiz, L. J. (2018). Un estudio exploratorio sobre los errores y las dificultades del alumnado de Bachillerato respecto al concepto de derivada. Aula Abierta, 47(4), 449-462. https://doi.org/10.17811/rifie.47.4.2018.449-462
Klippert, J. (2000). On a discontinuity of a derivative. International Journal of Mathematical Education in Science and Technology, 31(2), 282-287. https://doi.org/10.1080/00207390050032252
Leavy, P. (2017). Research design: Quantitative, qualitative, mixed methods, arts-based, and community-based participatory research approaches. The Guilford Press. https://doi.org/10.1111/fcsr.12276
Sánchez-Matamoros, G., García, M. y Llinares, S. (2006). El desarrollo del esquema de derivada. Enseñanza de las Ciencias, 24(1), 85-98. https://doi.org/10.5565/rev/ensciencias.3816
Sánchez-Matamoros, G., García, M. y Llinares, S. (2008). La comprensión de la derivada como objeto de investigación en didáctica de la matemática. Revista Latinoamericana de Investigación en Matemática Educativa, 11(2), 267-296.
Shulman, L. S. (1987). Knowledge and teaching: foundations of the new reform. Harvard Educational Review, 57(1), 1-23. https://doi.org/10.17763/haer.57.1.j463w79r56455411
Spivak, M. (1992). Cálculo infinitesimal (2ª ed.). Editorial Reverté.
Stewart, J. (2012). Cálculo de una variable: Trascendentes tempranas (7ª ed.). Cengage Learning.
Tall, D. (1991). The psychology of Advanced Mathematical Thinking. En Tall, D. (Ed.). Advanced Mathematical Thinking (pp. 3-21). Kluwer Academic Publishers.
Vargas, M. F., Fernández-Plaza, J. A. y Ruiz-Hidalgo, J. F. (2020). Análisis de los argumentos dados por docentes en formación a una tarea sobre derivadas. PNA, 14(3), 173-203. https://doi.org/10.30827/pna.v14i3.12229
Vega Urquieta, M. A., Carrillo Yañez, J. y Soto Andrade, J. (2014). Análisis según el modelo cognitivo APOS del aprendizaje construido del concepto de la derivada. Boletim de Educação Matemática, 28(48), 403-429. https://doi.org/10.1590/1980-4415v28n48a20
Derechos de autor 2023 Luis Dubarbie,Arantxa García Gallo
Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
El material publicado en la revista se distribuye bajo una licencia Creative Commons Reconocimiento Internacional 4.0 (CC-BY 4.0). Esta licencia permite a otros distribuir, mezclar, ajustar y construir a partir de su obra, incluso con fines comerciales, siempre que le sea reconocida la autoría de la creación original. Los autores de los trabajos publicados en Revista Unión retienen el copyright de los mismos sin restricción alguna.
Aceptado 2023-06-21
Publicado 2023-08-31